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Overview

* There are at least two flow situations in which the viscous term in the
Navier—Stokes equation can be neglected.

* The first occurs in high Reynolds number regions of flow where net
viscous forces are known to be negligible compared to inertial and/or
pressure forces; we call these inviscid regions of flow.

* The second situation occurs when the vorticity is negligibly small; we
call these irrotational or potential regions of flow.

* In either case, removal of the viscous terms from the Navier—Stokes
equation yields the Euler equation.-

* There are some serious deficiencies associated with application of
the Euler equation to practical flow problems. High on the list of
deficiencies is the inability to specify the no-slip condition at solid
walls.
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lrrotational
flow

Irrotational flow around
a wing.

The solution may be
obtained from potential
flow theory.

This particular solution
is obtained as the sum
of three elementary
solutions: free stream,
line source and line
vortex.

Lift force proportional to
the circulation and free
stream velocity.

Drag force zero.




* By the mid-1800s, the Navier—Stokes equation was known, but couldn’t be
solved except for flows of very simple geometries.

* Meanwhile, mathematicians were able to obtain beautiful analytical
solutions of the Euler equation and of the potential flow equations for flows
of complex geometry, but their results were often physically meaningless.
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* A major breakthrough in fluid mechanics occurred in 1904 when Ludwig
Prandtl (1875-1953) introduced the boundary layer approximation.

* Prandtl’s idea was to divide the flow into two regions: an outer flow region
that is inviscid and/or irrotational, and an inner flow region called a
boundary layer—a very thin region of flow near a solid wall where viscous

forces and rotationality cannot be ignored.

* In the outer flow region, the continuity and Euler equations apply to obtain
the outer flow velocity field, and the Bernoulli equation to obtain the
pressure field. Alternatively, if the outer flow region is irrotational, we may

use potential flow techniques.

K/Oy{o



The boundary
layer

Prandtl introduced the
boundary layer
approximation to bridge
the gap between the
Euler equation and the
Navier—Stokes equation,
and between the slip
condition and the no-slip
condition at solid walls.




Outer Aow (inviscid andfor
irrotational region of flow)

Boundary layer (rotational with
non-negligible viscous forces)




The larger the Reynolds number, the thinner the boundary layer along the
plate at a given x-location

Note: this is not
a streamline.
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Reynolds number along a flat plate: Re = =



Laminar to turbulent transition

v Y Streamlines
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Photograph
of a velocity
profile of a

uniform
stream over
a flat plate

Wortmann, F. X. 1977 AGARD Conf. Proc. no.
224, paper 12
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Negligible viscosity or irrotational flow cannot be assumed near
solid boundaries, such as the case of the airplane wing.
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Rigid-body-like vortex Parallel flow with shear Irrotational vortex
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Vorticity and lines of vorticity

e Since O = V X Vits divergence is zero, i.e.@ w

* The vorticity is a solenoidal field with lines of vorticity (like
streamlines) parallel to its direction and density proportional to its
magnitude.

* Dynamics of the lines of vorticity differs in the Euler and Navier-
Stokes equations.
s !
\ 4

The quantity
—a <)
I"=jm-udS = S/"*J” (5.6)
A
(4

is the same for all cross-sections S of a vortex tube.
G : Furthermore, T is independent of time.
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Euler fluid

Euler equation

Identity

(u+Vu=(VAu)Au+Viu?

d
Ux J+(th)nu=—7(£+%u2+x)J
or P

S
Application of the curl

3
?T+Vn(mﬂ.u)=0

Chap. 5, Acheson
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Identity

VA(F AG)=(G-V)F —(F -V)G+F(V-G)-G(V - F)

om
_+ ™ — - + - — L] —
» (u-Vo—(0:Vu+aoV-u uWVm 0

o JNL L) = ©
We have

Vorticity equation




If the flow is 2D

u= [u(x, Y f): U(x, Ys I)r 0]

0= (0,0, w)
Then Mj T Cte
cu
O-Viu=w—=0
(@ V)u P
It follows that
Dw
— =0
Dt |

In the two-dimensional flow of an ideal fluid subject to
a conservative body force g the vorticity w of each
individual fluid element is conserved.



Vortex lines in the z-direction

o= wk

Z-component:
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The vorticity of a fluid element increases with time if gw/3z >0 .

If the fluid elements are being stretched in the z-direction, it leads to an
intensification of the local vorticity field.
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Kelvin circulation theorem

THEOREM. Let an inviscid, incompressible fluid of constant
density be in motion in the presence of a conservative body force
g=—Vyx per unit mass. Let C(t) denote a closed circuit that
consists of the same fluid particles as time proceeds (Fig. 5.1).
Then the circulation

r=Lmu - dx (5.1)

round C(t) is independent of time.
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The inviscid equations of motion enter the proof only in
helping to evaluate a line integral round C, so if viscous
forces happened to be important elsewhere in the flow, i.e.
off the curve C, this would not affect the conclusion that I
remains constant round C.
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Navier-Stokes: Viscosity drives the diffusion

of vorticity
Faber, chap. 10

To find what difference viscosity makes, we need to repeat the above analysis
using the Navier-Stokes equation as our starting point, rather than the Euler
equation. The viscous term on the left-hand side of (6.25) is —»yV /A 42, and the
curl of this, since V-2 = 0, is V242, Hence we now have

P2 _ oviu+ v
D¢ P
(P
=V

Apart from the (£2-V)u term, the cffects of which are as described above, this is

just a three-dimensional diffusion equation for each of the components of £2; to be D IJ‘J ’ G .
more precise, it becomes a three-dimensional equation in the co-moving frame for ' slon ? ‘
which D&¥Dr and 042t are the same. Thus vorticity is not permanently embed- 2

ded if the fluid has viscosity; where V20 is non-zero it spreads by diffusion, and its 2/(« — Dﬂ 7§
diffusivity is the kinematic viscosity, v = 5/p. Since the process described by the Ot

diffusion equation always conserves the thing which is diffusing, whether it be dye

or heat or whatever, the fact that vorticity is liable to diffuse does not affect our

conclusion that lines of vorticity are conserved.
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Example: Poiseuille flow

If, however, the vorticity 1s positive mn region A and negative in an adjoining
region B, diffusion from A to B and vice versa is bound to result in some degree of
cancellation. The Tines of vorticity in such situations tend to form closed loops
which disappear by collapsing to a point. For example, consider the simple case of
a fluid undergoing Poiseuille flow along a straight cylindrical pipe whose axis is the
x4 axis. In the plane x, = (0, say, 2, and 25 both vanish, while

Thus £2 changes sign on the axis in the plane x, = 0, and it also does so in
the plane x; = 0 where 2, is the non-vanishing component; evidently the lines of
vorticity are closed circular loops coaxial with the pipe. Now the direction in which
the lines of vorticity diffuse is determined by the sign of dQ/dr. Because this is
positive we should picture the loops as diffusing inwards, to smaller values of
radius r, and ultimately collapsing on the axis. We should therefore picture the
surface of the fluid, where it is in contact with the solid wall of the pipe, as a
vorticity source at which new loops are continuously created to replace those
which collapse.
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Sudden motion of an infinite flat plane
(revisited)

Flow above a solid wall at y = 0. Initially, the fuid is at rest. At time t = 0O, the
boundary starts to move with velocity U in the x direction.

> U

The velocity field is
u = {u{y: t:] 3 l]: l]]

and the Navier-Stokes equation

Du
— = -V + .?Eu,
P Dt P+ H :
reduces to 5
e d“u
P =B
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* Boundary conditions:u=Uony=0and U - 0asy — oo,
* We also impose the initial condition: u=0att=0.

* The velocity u(x, t) thus satisfies the 1-D diffusion equation with

diffusivity v = %, where v is the kinematic viscosity.

* Similarity solution is

w(y,t) = U [1 —erf(gjﬁ)] .

The velocity u(y,t) will be approximately zero wherever y/ 2/t is large. In addition, for a
fixed value of y, the velocity will remain less than 0.01U until a time ¢ such that y ~~ 4+/wt.
Hence, at time ¢, the fluid is only moving within a narrow region of thickness 4/vt. This
narrow region is called the viscous boundary layer. Note that the boundary layer thickness is
mdependent of U.

ns
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Diffusion of vorticity from the surface to the
fluid

Let us now return to the case of the flow above a boundary that is set in motion at time ¢ = 0.
Initially, the vorticity is zero everywhere, except at y = 0 where the fluid velocity jumps from
U to 0. At time ¢, the velocity is given by equation (4.2). The vorticity w reads:

Ou U y?
w=——=—= exp| ——].

Oy avt 4ut
This 1s a Gaussian distribution of standard deviation v2vt. Hence, as times increases, the
vorticity gradually spreads away from the boundary over a distance of order v2uvt.

Since
) =U|1—erf
wt) [ r (wﬁ)]
ierfz=ie_*2
¥ m
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SOLUTION OF THE 1D DIFFUSION EQUATION

We seek a similarily solution:
u(y,t) = f(n), where n = yt?,

for some constant a. Using the chain rule:

a ad
Pri
Ezawﬂ—li
ot dn’

so that equation (4.1) becomes:

1 df a*f
a—1 _ 2a
ayt o v Py

and therefore:
B ey
dn? v odnp

For the similarity solution to exist, this equation must only contain y and ¢t in the combination
n = yt* and therefore —a — 1 = a. We get: a = 7%. Solutions thus exasts for the similarity

variable ) = y/V/f and satisfy:

Ef ond
dn®  wdn
Substituting v = df /dn we have:
d__1n
an W’

which has general solution:

Integrating again, we obtain:

ul 1;,2
_f:A/D- exp (_E) dn + B.

The above integral can be expressed in terms of the error function:
2 = 2
erf(x) = ﬁ[; exp {7:1: )d..’r:.
Substituting =z = 1/24/v, we have:

f = AVrert (2%) +B.
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Start up of shear flow (parallel plates)

y /

r}.yI
= He

Z

Let us now modify the previous problem by considering the start-up of a shear flow between
two parallel plates located at y = 0 and y = h. Once again, we begin to move the lower plate
with velocity U at £ = 0. The problem is the same as that above except that the boundary
condition at infinity is replaced by one at y = h. The velocity now satisfies:

du 0u

— =v—F, 4.3

ot oy (43)
together with the boundary conditions: u(0,t) = U and w(h,t) = 0, and the initial condition
u(y, 0) = 0.
First, we observe that the steady solution us = U (1 — y/h) satisfies the equation at any ¢ # 0
and the boundary conditions. We then write:

u(y, t) = us + vy, ),
and seek a separable solution of the form:

u(y, 1) = T(H)Y (y)-

26



Hence, the solution is:

u(y,t)=U (1 - %) — % i %exp (— w;:;rz t) sin (%) .
n=1

This flow resembles that of the unbounded plate until the boundary layer grows to the width
of the channel. The solution then approaches the steady state us. Note that the slowest
decaying exponential in the sum corresponds to n = 1. As a result, the flow reaches u; on a
time of order h?/(vn?). For water in a lem channel, this time is about 10s and scales inversely
with » so that in a fluid of lower viscosity it becomes longer.
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SOLUTION OF START UP OF SHEAR FLOW

This gives:
YT =vTY",
so that:
YU’ 1 Tl k
Y vT

where k is the constant of integration. Since us takes care of the moving boundary, we want
to find solutions satisfying Y (0) = Y (k) = 0. We thus choose solutions of the form:

V(o) sin (“22).

so that:
yn n2?1'2
Y R
It follows:
T B vnlm?
T

and so we have separable solutions of the form:

vn’n? . [(nTy
U, = exXp _Tt sin (T) :

The general solution for u satisfying the boundary conditions is:

u(y,t)=U (1 — %) + ganexp (—%2;23) sin (%) .

The initial condition at ¢ = 0 requires:

o (%2) =0 1-2)

for 0 < y < h. We can determine the a,, using Fourier series properties:

U Ry nwy 2U
= — Z—1)sin(—)dy=——
fin h/,) (h. )S‘“( h) YT
Hence, the solution is:

u(y,t)=U (1 - %) - %i%e@ (—w‘?:;?t) sin (ﬂ_;lf.@’) )
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Boundary layer equations

* We consider steady, two-dimensional flow in the xy-plane in Cartesian
coordinates. The methodology can be extended to axisymmetric boundary layers
or to three-dimensional boundary layers in any coordinate system.

* We neglect gravity since we are not dealing with free surfaces or with buoyancy-
driven flows (free convection flows), where gravitational effects dominate.

* We consider laminar boundary layers; turbulent boundary layer equations are
beyond the scope of this course.

* For a boundary layer along a solid wall, we adopt a coordinate system in which x
is everywhere parallel to the wall and y is everywhere normal to the wall.

* When we solve the boundary layer equations, we do so at one x-location at a
time, using this coordinate system locally, and it is locally orthogonal.

Boundary layer

29



The nondimensionalized Navier—Stokes equation is

P

velye

— —= = — 1
Re

« The Euler number is of order 1, since pressure differences outside the boundary layer are
determined by the Bernoulli equation and AP ~pV 2,

* Vs a characteristic velocity of the outer flow, typically the free-stream velocity for bodies
immersed in a uniform flow.

« The characteristic length is L, some characteristic size of the body. For boundary layers, x
is of order o L, and Reynolds number is Re,, usuallly very high.

Redo the nondimensionalization of the equations based on appropriate
scales within the boundary layer.

Boundary layer « Since x ~ L, we use L as the scale for distances in the streamwise

|' g U=l direction and for derivatives with respect to x. However, this scale is
' too large for derivatives with respect to y. We use § for distances in
the direction normal to the streamwise direction and for derivatives
with respect to y.

« Similarly, we use U as the characteristic velocity, where U is the
magnitude of the velocity component parallel to the wall at a location
just above the boundary layer. U is in general a function of x.

30



Thus, within the boundary layer at some value of x, the orders of magnitude are

d

| d 1
~U P-P_~pl? ~— =~
“ = P ax L ay &

The order of magnitude of velocity component v is obtained from the continuity
equation

,,-, au av L v
J - o o w_y o, U_w
“ ax  ay L &
A
] -

Since the two terms have to balance each other, they must be of the same order of
magnitude. Thus we obtain the order of magnitude of velocity component v,

o~ LITS 3 ZL L - E"Lﬂminar 5x)

— iiona = Turbulent——~ On scale

Since 0/L << 1 in a boundary layer, we conclude that v << u, and the adimensional
variables are

U
Boundlary layer
|
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We now consider the x- and y-components of the Navier—Stokes equation. We substitute
these nondimensional variables into the y-momentum equatlon glvmg

v v 1 aP av v
u I v + v
- dx - dy g ay ax’ ay-
e Ea l{_‘: N e S e —
b U YL a4 U 1 & Pple N £ s
ol ot L gyt 8 T & Id}-l: L&
After some algebra SL =R SO
—~ ] —~
A (LY (’L)’a-ﬂ* () By
—7 s ayE &) ay* UL/J ax*? ULJ\&/) ay*?
W m/ \—v—’

The middle term on the rhs. is clearly smaller than any oéher term since Re, = UL/v > 1.
For the same reason, the last term on the right is much smaller than the first term on the
right. Neglecting these two terms leaves the two terms on the left and the first term on the
right. However, since L> § , the pressure gradient is orders of magnitude greater than the
advective terms on the left of the equation. Thus, the only term left is the pressure term.
Since no other term in the equation can balance that term, we have no choice but to set it
to zero. Thus, the nondimensional y-momentum equation is

[t

~ aP*
=)

0
I:-I:Ir':!:

The pressure across a boundary layer ( y-direction) is
nearly constant.
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Since P is not a function of y, we replace dP/dx by dP/dx, where P is the pressure
calculated from the outer flow approximation (using either continuity plus Euler, or the
potential flow equations plus Bernoulli). The x-component of the Navier—Stokes
equation becomes

¥ ¥

di N i | dP . a°u . a°u

H — U — = ——— v v
— dx — dy p dx ax? ay?
il F :I‘.!'_._.a e Sl \ ; N ;
4wl Lo 14 Prelf , . wu & wlU
it L ot B par*t L FUaal ot F

or o)

du* du* dpP* v\ du* v L\ 8°u*
ut — + p* = + | — -+ | — | = ~
dx* ay* dx* UL/ ax** ULJ\&/ ay*
N — \4-5.._) ———
~1 ~k SR ALEL gty SSE
The middle term on the right side is orders of magnltude smaTIer than the terms on the
left. What about the last term on the right? If we neglect this term, we throw out all the
viscous terms and are back to the Euler equation. Clearly this term must remain.
Furthermore, since all the remaining terms are of order unity, the combination of

parameters in parentheses in the last term on the right side must also be of order 1,
w ~L ._S_. ~ | ‘é ~ \/;

— ~)
1\
7 (ﬁ)@”'

i du du ] d%u
x-momentum boundary laver equation: u d'_ + v P = — + v
X v p




Boundary layver equations:

Finally, since we know from the y-momentum equation analysis that the pressure
across the boundary layer is the same as that outside the boundary layer, we apply
the Bernoulli equation to the outer flow region. Differentiating with respect to x we get

P ] 1 dP dU P= P00, U= U0
— + —U? = constant —» ——=-U— U
p 2 p dx dx LN . B

Wall
Substitution yields ", Boundary layer
du du dU au
U —tv—=U—+r—
dx dy dlx dy
No boundary conditions on
downstream edge of flow domain
, |
| ou v
—+—=0
dx dy

dut dut dU
H— + v— = ',
dx dy dx
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e For a typical boundary layer
problem along a wall, we
specify the no-slip condition
at the wall (u=v=0aty=0),
the outer flow condition at
the edge of the boundary
layer and beyond [u = U(x) as
y = ], and a starting profile
at some upstream location [u
= ustarting(y) atx = Xstartingl
where X, ing May or may not
be zero]. With these
boundary conditions, we
simply march downstream in
the x-direction, solving the
boundary layer equations as
we go.

Step 1: Calculate Uix) (outer flow).

'

Step 2: Assume a thin boundary layer.

'

Step 3: Solve boundary layer equations.

|

Step 4: Calculate gquantities of interest.

'

Step 5: Venfy that boundary layer is thin.
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Example: Flat plate

Outer flow:

did dir
— +

dx dy

=0

—>u=0 aty=20

—v =0 aty =0

U{x) = V = constant

})l//‘);«, =0
du du atu
H—+v—=r—;
dx dy dav-

=

=U asy—o0 &

= U forallyatx =0 &

No convenient analytical solution is available.
However, a series solution was obtained in 1908

by Blasius.

-

VS

]_.f

L

ﬁ
A (oo )

popv

Infinitesimally thin flat plate P

\77

-7
MIO

X

y
Lix) = 1-"\ ;
N
X
¥ _
Uix) = V. . Boundary
\ | layer
L

X
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Blasius similarity solution

) . o i ) ) y Magnifying Uix)=V
Blasius introduced a similarity variable n that combines independent V7 glassor
—_— room tool

variables x and y into one nondimensional independent variable,

—
.U
n=yx x

and he solved for a nondimensionalized form of the x-component of

velocity,
fr=
ﬁ .
R
/
23 [

0

X

v Slope at
the wall

02 04 06 08
fr=ull

1

(a)

u Uixy=V
. L ¥
U = function of n — 50

Tﬁqlm , W=7

U o
J/I\/,‘; 1}=4.91=J;§ — ;z"\/R_er
20 #0

Shear stress in physical variables:

pl?

V' Re,

7, = 0.332

37



Blasius
solution

Non-linear
third order
ODE.

Solved
numerically or
by a series
expansion.

Similarity
Variable

Streamfunction

Blasius
Equation

Boundary
Conditions

n=-=—=L
0 \/ vx/Up

174
5UJ \/ vx Up

f(n)=—r

[l

wall: 1 = 0 f:f‘r:

freestream: 1]—500 f‘f: |

U, = Constant




e Discussion: The Blasius boundary
layer solution is valid only for flow
over a flat plate perfectly aligned
with the flow.

* However, it is often used as a
quick approximation for the
boundary layer developing along
solid walls that are not necessarily
flat nor exactly parallel to the flow,
as in a car hood.
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Backflow, eddies
and turbulence

A vortex street around a cylinder. This can
occur around cylinders and spheres, for any
fluid, cylinder size and fluid speed, provided
that the flow has a Reynolds number in the

range ~40 to ~1000.
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Summary of expressions for laminar and turbulent boundary layers on a smooth
flat plate aligned parallel to a uniform stream*

(a) (b)
Property Laminar Turbulentt? Turbulent®?
‘ o 491 o 0.16 o 0.38
Boundary layer thickness T Vre < = W . = W

5 172 8% _ 0020 8% _ 0.048

Displacement thickness = e —= @ —= m
Momentum thickness 4 = 0.664 9 == M 0 = ﬂ
XA HR_EI x  (Re)V’ x  (Re)'s

0.664 c = 0.027 c. = 0.059
VRe, 1 R T (Reyts

Local skin friction coefficient  C,, =

* Laminar values are exact and are listed to three significant digits, but turbulent values are listed to only
two significant digits due to the large uncertainty affiliated with all turbulent flow fields.

T Obtained from one-seventh-power law.

T Obtained from one-seventh-power law combined with empirical data for turbulent flow through smooth
pipes.

L. . . i 0.664
Local friction coefficient, laminar flat plate: C .= =

T LY, Re,

43



44



Backflow, eddies
and turbulence

Downwind of
obstacles, in this case,
the Madeira and
the Canary Islands off
the west African
coast, eddies create
turbulent patterns
called votex streets.




Ex.4, list 6
Acheson, page 269

Simplified boundary layer
Consider the following problem for a function u(y):
eu"+u' =1, u(0)=0, u(l)=2, (8.10)

where ¢ denotes a small positive constant. The exact solution is
easily shown to be

—yl/€e

— (8.11)

1—¢€
l1—e

u=y-+

Upm

Upy.




Now, e "¢ is extremely small, and so is e™¢, for 0<y <1,

unless y i1s of order &. The solution may therefore be
approximated, in two parts, by a ‘mainstream’

uM=y+1,

and a ‘boundary layer’ adjacent to y =0 with thickness of order
E:

Upr = 1- e_”’e.
These two expressions represent particular limits of the full,
exact solution (8.11), the first being obtained by letting ¢ — 0 at
fixed y, and the second being obtained by letting ¢ — 0 with y/¢
fixed. Notably,

lim Ugr = llm Un,

y/ g=~>x y—0

and this is the equivalent statement to eqn (8.9) in this
elementary example.
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It is instructive to take the analogy further by returning to eqn
(8.10) and proceeding on an approximate basis from the outset,
exploiting the fact that ¢ is small. If we neglect the term eu”
entirely, on this basis, we obtain

up=1, i.e.up=y+c,

and on making this satisfy the condition uy(1) =2 we obtain an
‘outer’ solution,

uo(y)=y +1.

This procedure thus far is comparable with treating a high
Reynolds number flow as being entirely inviscid; the small
parameter £ multiplies the highest derivative in the equation, and
by ignoring that term we lower the order of the system and are
unable to satisfy all the boundary conditions. Here an ‘inner’
solution, or boundary layer, is needed near y =0, in order to
satisfy the boundary condition there. We may recognize
variations of u in this boundary layer to be much more rapid than
those elsewhere by changing the independent variable in eqn
(8.10) to

Y=y/e



With this scaling the previously negligible second derivative
regains its importance:
1 du 1du
‘ear T edy
so that to a first approximation the inner solution u; satisfies
d’u; du;
A2

1,

0.

This is the equivalent of the boundary layer equation (8.1), in
our simple example (and cf. Exercise 8.1). On making the inner
solution satisfy the boundary condition #(0) = 0 we obtain

U; = A(l - e_Y)r
and the matching condition

lim u,= lim Up
Y—o y—0

determines that A = 1. Thus

u_{y+1 as e~ 0 for fixed y,
1—e™*  ase—>0forfixed y/¢,

in keeping with our deductions from the exact solution (8.11).
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